آزمون های آماری | انجام پایان نامه ارشد و دکتری
021-66127308

آزمون های آماری

 

جهت بررسی سواالت یا فرضیات تحقیق می بایست آزمون آماری مناسب انتخاب گردد. انتخاب آزمون آماری مناسب بستگی به تعداد متغیرهای تحقیق، تعداد گروه های مقایسه شده، مستقل یا وابسته بودن گروه ها، نرمال بودن یا نبودن توزیع داده ها و نوع داده ها )عددی، رتبه ای، اسمی (دارد،درادامه آزمون های آماری متناسب با کاربرد آنها معرفی می شوند.

 آزمون t تک نمونه

 برای آزمون فرض پیرامون میانگین یک جامعه استفاده می شود. در بیشتر پژوهش هائی که با مقیاس لیکرت انجام می شوند جهت بررسی فرضیه های پژوهش و تحلیل سوالات تخصصی مربوط به آنها از این آزمون استفاده می شود.

 آزمون t وابسته

برای آزمون فرض پیرامون دو میانگین از یک جامعه استفاده می شود. برای مثال اختلاف میانگین رضایت کارکنان یک سازمان قبل و بعد از تغییر مدیریت یا زمانی که نمرات یک کلاس با پیش آزمون و پس آزمون سنجش می شود.

 آزمون t دو نمونه مستقل

جهت مقایسه میانگین دو جامعه استفاده می شود. در آزمون t برای دو نمونه مستقل فرض می شود واریانس دو جامعه برابر است. برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده میشود.

 آزمون t ولچ

این آزمون نیز مانند آزمون t دو نمونه جهت مقایسه میانگین دو جامعه استفاده می شود. در آزمون t ولچ فرض می شود واریانس دو جامعه برابر نیست. برای نمونه به منظور بررسی معنی دار بودن تفاوت میانگین نمره نظرات پاسخ دهندگان بر اساس جنسیت در خصوص هر یک از فرضیه های پژوهش استفاده میشود.

 آزمون t استیودنت

آزمون t تی استیودنت برای ارزیابی میزان همقوارگی یا یکسان بودن و نبودن میانگین نمونه ای با میانگین جامعه در حالتی به کار می رود که انحراف معیار جامعه مجهول باشد.

چون توزیع t   در مورد نمونه های کوچک   با استفاده از درجات آزادی تعدیل می‌شود، می‌توان از آزمون t  برای نمونه های بسیار کوچک استفاده نمود.

آزمون t هتلینگ

 آزمون T هتلینگ تعمیم یافته t استیودنت است. در آزمون t یک نمونه ای، میانگین یک صفت از یک نمونه، با یک عدد فرضی که میانگین آن صفت از جامعه فرض می‌شد، مورد مقایسه قرار می‌گرفت، اما در T  هتلینگ K متغیر (صفت) از آن جامعه (نمونه های جامعه) با k  عدد فرضی، مورد مقایسه قرار می‌گیرند. در واقع این آزمون از نوع آزمونهای چند متغیره است که همقوارگی (Goodness of fit) را بین صفت های مختلف از جامعه بدست می‌دهد. در T  هتلینگ دو نمونه ای نیز همچون T استیودنت دو نمونه ای، مقایسه دو نمونه است اما در این آزمون K صفت از یک جامعه (نمونه) با K صفت از جامعه دیگر (نمونه دیگر) مورد مقایسه قرار می‌گیرد.

آزمون F-تحلیل واریانس (ANOVA)

این آزمون تعمیم یافته آزمون t   است و برای ارزیابی یکسان بودن یا یکسان نبودن دو جامعه و یا چند جامعه به کار برده می‌شود. در این آزمون واریانس کل جامعه به عوامل اولیه آن تجزیه می‌شود. به همین دلیل به آن آزمون آنالیز واریانس (ANOVA) نیز می‌گویند.

وقتی بخواهیم بجای دو جامعه، همقوارگی چند جامعه را تواما با هم مقایسه نماییم از این آزمون استفاده می‌شود، چون مقایسه میانگین های چند جامعه با آزمون t   بسیار مشکل است.مقایسه میانگین ها و همقوارگی چند جامعه بوسیله این آزمونF   یا ANOVA) راحت تر از آزمون t  امکانپذیر است.

تحلیل واریانس چندعاملی (MANOVA)

تحلیل واریانس چند متغیره (MANOVA ) نیز مانند تحلیل واریانس (ANOVA ) با بررسی تفاوت بین گروه ها سر و کار دارد. با این تفاوت که تحلیل واریانس یک روش یک متغیره بوده و سعی می کند تا از این طریق به سنجش تفاوت گروه ها بر اساس یک متغیر وابسته کمی بپردازد.
زمانی که بیش از یک متغیر وابسته وجود داشته باشد ممکن است همبستگی و ترکیب خطی متغیرهای فوق روابط و نتایج جدیدی را به وجود آورند که در استفاده از تحلیل واریانس یک متغیره (ANOVA ) راه حل مناسبی به نظر نمی رسد. برای حل این مشکل باید از تحلیل واریانس چند متغیره (MANOVA ) استفاده کرد.

آزمون Post Hoc

پس از این که، این نتیجه حاصل شد که بردارهای میانگین گروه ها با هم برابر نیستند ممکن است محقق درصدد باشد تا مقایسه های دیگری را نیز در بین گروه ها انجام دهد. به عنوان مثال ممکن است فردی بخواهد بداند که آیا تفاوتی بین گروه ها در یک متغیر وابسته خاص یا متغیر ترکیبی وجود دارد یا خیر؟ برای این کار آماره مقایسه مقید شفه بین گروه ها، دانکن و توکی بر اساس هر یک از متغیر های وابسته، از جمله مقایسه هایی است که انجام می گیرد. بجز این تکنیک ها، روش های دیگری نیز وجود دارند که یکی از آنها تحلیل گام به پیش (Step-down analysis ) می باشد . این روش با حذف اثرات سایر متغیرهای وابسته آماری F یک متغیره، برای یک متغیر وابسته محاسبه می کند.

تحلیل کوواریانس(ANCOVA )

تحلیل کوواریانس زمانی قابل استفاده است که در آن متغیر وابسته کمی و چند متغیر مستقل کمی و کیفی وجود داشته باشد. در این گونه طرح ها به متغیر مستقل کمی اصطلاح متغیر کمکی (Covariate ) و به متغیر مستقل کیفی اصطلاح عامل (Factor ) اطلاق می شود.

استفاده از متغیر کوواریانس (ANCOVA ) شرایطی دارد که می توان آن را به شرح ذیل خلاصه کرد: ۱- زمانی که یک یا چند متغیر خارجی مزاحم وجود دارد که در متغیر وابسته اثر می گذارد. ۲- این متغیر مزاحم قابل اندازه گیری در مقیاس فاصله ای یا نسبی باشد. ۳- بین متغیر یا متغیرهای مزاحم و متغیرهای وابسته رابطه وجود داشته باشد. ۴- کنترل تجربی متغیرهای مزاحم خارجی امکان پذیر نباشد. اگر در این شرایط قرار نباشد تعدیلی که در متغیر وابسته از طریق کنترل عوامل مزاحم بدست می آید درنظر گرفته شود، نتیجه به دست آمده صحیح نخواهد بود زیرا برخی اثرات قابل استناد، از متغیر وابسته حذف خواهد شد.

تحلیل کوواریانس چندعاملی (MANCOVA)

چنانچه در MANOVA بخواهیم اثر یک یا چند متغیر کمکی را حذف کنیم استفاده می شود.

رگرسیون 

ضریب همبستگی که برای کشف وجود یا عدم وجود رابطه بین دو یا چند متغیر بکار می رود از جمله روش های تحلیل است که علاوه بر تعیین شدت و ضعف رابطه بین دو متغیر، جهت روابط را نیز نشان می دهد. اما این روش قادر به بیان روابط علی بین متغیر ها نبوده و نمی تواند مدعی باشد که کدام یک از متغیر ها علت و کدام یک معلول دیگری است. همچنین امکان پیش بینی یک متغیر از طریق یا متغیر های دیگر وجود ندارد. به همین دلیل برای تحلیل های پیشرفته تر و پیش بینی دو متغیر وابسته در صورت تغییر در متغیر یا متغیر های مستقل باید از روشهای دیگری نظیر تحلیل رگرسیون استفاده کرد.

رگرسیون ساده

اگر بخواهیم تنها با توجه به یک متغیر مستقل، تغییرات متغیر وابسته را پیش بینی کنیم از دستور رگرسیون ساده استفاده می کنیم.

رگرسیون چندگانه

زمانی که دنبال این مسئله باشیم که کدام یک از متغیر های مستقل برای پیش بینی متغیر وابسته سودمندتر و قوی تر است از طریق تحلیل رگرسیون چندگانه (Multiple Regression ) محاسبه می شود.روش رگرسیون چندگانه (Enter ): اگر به دنبال اثرات کلیه متغیر های مستقل بر وابسته باشیم و تمامی آنها را همزمان وارد تحلیل کنیم از رگرسیون به شیوهEnter استفاده می کنیم. روش رگرسیون چندگانه گام به گام(Stepwise Method ): روشی است که در آن قوی ترین متغیر ها یک به یک وارد معادله می شوند و این کار تا زمانی که خطای آزمون معنی داری به ۵ درصد برسد ادامه می یابد.

روش رگرسیون چندگانه پس حذف رو  (Backward Elimination Method )

در این روش نیز مانند روش اینتر ابتدا کلیه متغیر های مستقل وارد معادله شده و اثر کلیه متغیر ها بر روی متغیر وابسته سنجیده می شود. اما در این روش به مرور متغیر های ضعیفتر، یکی پس از دیگری از معادله خارج می شوند تا زمانی که خطای آزمون معناداری به ده درصد برسد.

رگرسیون لوجستیک

در صورتی که متغیر وابسته از نوع اسمی دو وجهی باشد بجای استفاده از رگرسیون چندگانه باید از رگرسیون لوجستیک استفاده شود. در این روش بر اساس متغیر های مستقل مورد استفاده می توان احتمال هر یک از سطوح متغیر دو وجهی وابسته را محاسبه کرد.

آزمون مک نمار

آزمون مک نمار یکی از آزمون های مهم غیر پارامتریک است و اغلب در مواردی به کار برده می شود که داده ها به صورت اسمی و مربوط به دو نمونه مرتبط به هم یا همبسته باشند. این آزمون به ویژه در مواردی بکار گرفته می شود که بخواهیم نظرات قبلی و بعدی افراد را مورد مقایسه و بررسی قرار دهیم. ابتدا تعدادی از افراد را به عنوان نمونه انتخاب کرده سپس نظر آنها را جویا می شویم سپس مداخله مورد نظر را انجام می دهیم و مجددا نسبت به دریافت نظرات اقدام خواهیم کرد. در این جا فرض صفر بر این است که تفاوتی بین نظرات قبلی و بعدی وجود ندارد.

آزمون ویلکاکسون

در بسیاری از پژوهش هایی که نمونه ها به صورت جفت شده و همبسته اند، ممکن است محقق بخواهید تا هم جهت تغییر و هم میزان تغییر را مورد بررسی قرار دهد. برای این منظور آزمون ویلکاکسون آزمون مناسبی است. داده های مورد استفاده در این آزمون حداقل باید در سطح ترتیبی باشند. تست ویلکاکسون که آن را با علامت T نشان می دهند، بر این استدلال استوار است که اگر تفاوتی بین دو مجموعه از مقادیر وجود نداشته باشد، تقریبا به همان میزان که تفاوت + کوچک وجود دارد، تفاوت – کوچک نیز وجود خواهد داشت. همچنین حدودا به همان تعداد که تفاوت + بزرگ وجود داشته باشد به همان میزان نیز تفاوت – بزرگ وجود خواهد داشت. بنابر این مجموع رتبه ها برای تفاوت های + تقریبا برابر با مجموع رتبه ها برای تفاوت های – خواهد بود. اگر مجموع اختلاف + تفاوت زیادی با مجموع اختلاف – داشته باشد می توان قضاوت کرد که تفاوت معنی داری بین دو مجموعه مقادیر وجود دارد.

آزمون فریدمن

آزمون فریدمن یکی دیگر از آزمون های غیر پارامتریک است. این آزمون در واقع معادل آزمونF است. اما در اینجا فرض توزیع نرمال و برابر بودن واریانس ضرورتی ندارد. این روش برای مقایسه سه گروه یا بییشتر که همبسته باشند به کار می رود. آزمون فریدمن درصدد است تا بداند آیا مجموع رتبه های هر موضوع با چیزی که مورد انتظار می باشد بسیار متفاوت است یا خیر. اگر تفاوت زیادی بین شرایط مورد مطالعه وجود نداشته باشد در این صورت مجموع رتبه ها کم و بیش مثل هم خواهند بود.

آزمون کوکران

آزمون کوکران به عنوان یکی دیگر از روش های غیر پارامتریک، در واقع تعمیم یافته آزمون مک نمار است با این تفاوت که این روش برای مواردی که تعداد گروه ها یا تکرار، سه یا بیشتر از سه باشد به کار می رود. داده های این آزمون به صورت اسمی می باشند و وجود تفاوت بین نظرات افراد را مورد بررسی قرار می دهد.

آزمون من ویتنی

این آزمون برای مقایسه میانگین دو جامعه مستقل، زمانی که داده ها به صورت رتبه ای، یا ترتیبی باشند مورد استفاده قرار می گیرد. آزمون من ویتنی برای محاسبه تفاوت های موجود در بین دو گروه ، مقادیر مربوط به هر دو نمونه را به صورت یکجا و بدون توجه به اینکه هر مقدار به کدام گروه تعلق دارد رتبه بندی می کند. در موقع رتبه بندی چنانچه مقادیر تکراری وجود داشته باشد رتبه ی مربوط به آنها را با همدیگر جمع کرده و بر تعداد مقادیر مشترک تقسیم و رتبه مشترکی را برای همه آنها لحاظ می کنند.

آزمون کولموگروف سمیرنف

در آزمون خی دو اگر فراوانی های مورد انتظار بیش از ۲۰ درصد خانه های جدول، کمتر از ۵ باشد در این صورت نمی توان از فرول خی دو استفاده کرد. این مشکل معمولا زمانی پیش می آید که حجم نمونه کمتر از ۵۰ باشد و یا خانه های جدول بیشتر باشد. در چنین حالتی می توان از تست کولموگروف سمیرنف استفاده کرد. اساس این آزمون مقایسه فراوانی تجمعی نسبی مشاهد شده با فراوانی تجمعی نسبی مورد انتظار است.

آزمون کروسکال والیس

این آزمون در واقع معادل تحلیل واریانس یک طرفه می باشد، اما برخلاف آن نیازی به نرمال بودن جامعه و یکسانی انحراف معیارها نیست. از سوی دیگر این آزمون یاد بودی از روش من ویتنی است که مقادیر نمونه ها را یکجا به صورت نزولی یا صعودی مرتب، و بعد رتبه بندی می کند. آزمون کروسکال والیس که آن را با H نشان می دهند زمانی مورد استفاده قرار می گیرد که تعداد نمونه ها بیش از دو گروه باشد.

آزمون میانه

آزمون میانه یکی دیگر از روش های غیر پارامتری است که برای مقایسه سه یا بیشتر از سه گروه مورد استفاده قرار می گیرد. اطلاعات مورد نیاز در این روش باید در سطح رتبه ای بوده و حتی الامکان داده ها هم رتبه نباشند زیرا اگر میانه مشترک بین گروه ها جزو نمرات تکراری باشد در این صورت تشخیص تفاوت گروه ها با مشکل مواجه می شود. روش میانه مقادیر گروه های مورد بررسی را با هم ادغام می کند و یک میانه مشترک بین آنها تعیین و سپس تعداد مواردی که در هر گروه به طور جداگانه در بالا و پایین میانه مشترک قرار دارد را به دست می آورد و پس از آن تفاوت بین گروه ها را مشخص می کند. در این روش ضرورتی ندارد گروه ها با هم برابر باشند.

آزمونآزمون خطای استاندارد میانگین

این آزمون برای ارزیابی میزان همقوارگی یا یکسان بودن و یکسان نبودن (Goodness of fit) میانگین نمونه ای  و میانگین جامعه  به کار می رود. این آزمون مواقعی به کار می رود که می خواهیم بدانیم آیا میانگین برآورد شده نمونه ای  با میانگین جامعه  جور می آید یا نه.  اگر تفاوت   و  کم باشد، این تفاوت معلول تغییر پذیری نمونه ای شناخته می شود، ولی اگر زیاد باشد نتیجه گرفته می شود که برآورد نمونه ای با پارامتر جامعه یکسان (همقواره) نیست.

آزمون خی دو (کای اسکویر)

آزمون خی دو یکی از آزمون های غیر پارامتریک است که آن را با علامت نمایش می دهند. این آزمون توسط فیشر ارائه شده است تا به سنجش آماری معنی داری تفاوت بین فراوانیهای مشاهده شده و فراوانی های مورد انتظار بدست آمده از یک جامعه بپردازد. این آزمون نشان می دهد که آیا تفاوت موجود بین مقادیر فوق از نظر آماری معنی دار است یا این تفاوت عمدتا بر اساس شانس می باشد. در محاسبه خی دو فرض می شود که بین دو متغیر مورد بررسی (xوy ) ارتباط معنی داری وجود ندارد.

آزمون علامت-Sign Test 

این آزمون از انواع آزمونهای غیر پارامتری است و هنگامی به کار برده می‌شود که نمونه های جفت، مورد نظر باشد (مثل زن و شوهر و یا خانه های فرد و زوج و . . . ). زیرا در این آزمون یافته‌ها به صورت جفت جفت بررسی می‌شوند و اندازه مقادیر در آن بی اثر است و فقط علامت مثبت و منفی و یا در واقع جهت پاسخها و یا بیشتر و کمتر بودن پاسخهای جفت‌های گروه مورد تحقیق (نمونه آماری) در نظر گرفته می‌شود.

هنگامی که ارزشیابی متغیر مورد مطالعه با روشهای عادی قابل اندازه گیری نباشد و قضاوت در مورد نمونه های آماری (که به صورت جفت ها هستند) فقط با علامت بیشتر (+) و کمتر (-) مورد نظر باشد ، از این آزمون می‌توان استفاده کرد.

آزمون تقارن توزیع

در این آزمون شکل توزیع مورد سوال قرار می گیرد. فرض بدیل آن است که توزیع متقارن نیست.

آلفا کرونباخ

پایایی ابزار های سنجش در پژوهش های اجتماعی یکی از مهم ترین موضوعات روش شناختی است چرا که بدون آن نمی توان به نتایج مطالعات تجربی اعتماد کافی داشت. هماهنگی درونی بین آیتم ها و ضریب آلفای کرونباخ که بر پایه آن قرار دارد از عمومی ترین شیوه های بررسی پایایی ابزار های سنجش است.

آلفای کرونباخ برای ابزارهای تک بعدی مناسب است و در صورت چند بعدی بودن ابزار باید برای هر بعد به نحو جداگانه به محاسبه این ضریب دست زد. این ضریب در علوم مختلف بویژه علوم انسانی و پزشکی برای سنجش پایایی ابزارهای مختلف سنجش نگرش و یا آزمون های آموزشی و سنجش دانش دارای کاربرد فراوان است.

تحلیل مسیر

 تکنیک تحلیل مسیر از جمله تکنیک­های چند متغیره می باشد که علاوه بر بررسی اثرات مستقیم متغیرهای مستقل بر متغیر وابسته، اثرات غیر مستقیم این متغیرها را نیز مد نظر قرار می­دهد و روابط بین متغیرها را مطابق با واقعیت­های موجود، در تحلیل وارد می کند. اهمیت و ارجحیت تحلیل مسیر در مقایسه با تحلیل همبستگی در این است که تحلیل مسیر امکان سنجش اثرات نسبی هر متغیر مقدم یا توضیحی بر متغیرهای بعدی یا وابسته را ابتدا از طریق مشخص کردن مفروضات مربوط به روابط علی و بعد از طریق تعیین اثرات غیرمستقیم متغیرهای مستقل یا توضیحی فراهم می­کند.

تحلیل تشخیصی چندگانه

 تحلیل تشخیصی از جمله روشهای تفکیکی است که تلاش می کند تا با بهره گیری از برخی متغیر های مستقل، افراد گروه ها را که داده های آنها به صورت اسمی یا ترتیبی است به بهترین وجه از هم تفکیک کند و نهایتا متغیرها هایی که به طور مناسب گروه ها را از هم تفکیک می کنند مشخص کند.

این روش شباهت ها و تفاوت هایی از نظر کاربرد و تحلیل داده ها با سایر روش های چند متغیره دارد. تحلیل تشخیصی زمانی به عنوان یک روش موثر مورد استفاده قرار می گیرد که محقق بخواهد تفاوت های موجود بین گروه ها را تشخیص دهد و یا اینکه درصدد باشد افراد یا واحد های مورد مطالعه را به گروه ها یا طبقات تقسیم کند.
بنابر این روش تحلیل تشخیصی زمانی مفید می باشد که یک متغیر گروه بندی شده (کیفی) و چندین متغیر مستقل کمی وجود داشته باشد.

ضریب همبستگی چوپروف

ضریب همبستگی چوپروف که آن را با T نمایش می دهند به منظور تعیین شدت وابستگی بین متغیرهای مورد مطالعه به کار گرفته می شود و مقدار آن همواره بین صفر و یک در نوسان می باشد. این آزمون زمانیکه هر دو متغیر اسمی باشند و یا یکی اسمی و دیگری ترتیبی باشد مورد استفاده قرار می گیرد اما نباید سطر و ستون با هم برابر باشند.

ضریب همسبتگی فی

ضریب همسبتگی فی به منظور بررسی شدت همبستگی بین دو متغیر اسمی که به صورت دو وجهی و در قالب جدول توافقی ۲×۲ می باشد مورد استفاده قرار می گیرد. به همین دلیل در اینگونه موارد به جای استفاده از خی دو باید از ضریب همبستگی فی استفاده شود. تفاوت ضریب همبستگی فی با خی دو در این است که خی دو سطح معنی دار بودن همبستگی بین متغییر ها را تعیین می کند، در حالی که ضریب فی شدت همبستگی خی دو را نشان می دهد. ضریب همبستگی فی نیز مانند خی دو مورد تفسیر قرار می گیرد و مقدار آن نیز همواره بین صفر و یک در نوسان است.

 ضریب همبستگی توافق پیرسون

این ضریب که آن را با C نشان می دهند میزان همبستگی بین دو متغیر اسمی، که به صورت توافقی تنظیم شده اند را محاسبه می کند و این شاخص زمانی به کار می رود که خانه های جدول توافقی بیشتر از ۲×۲ باشد. هر چه مقدار این ضریب بزرگتر باشد درجه همبستگی متغیرها با هم بیشتر خواهد بود و افزایش مقدار این ضریب بستگی به تعداد طبقات آن دارد.

 ضریب کرامر

این ضریب برای تعیین میزان شدت همبستگی بین دو متغیر اسمی مورد استفاده قرار می گیرد و آن را با علامت نمایش می دهند که مقدار آن همواره بین صفر و یک در نوسان است. این ضریب در مقایسه با سایر ضرایب انعطاف بیشتری دارد. بطوری که هم برای جداول توافقی بیشتر از ۲×۲ و هم برای جداول مستطیلی به کار می رود.

 ضریب همبستگی رتبه ای کندال

شاخص های کندال حالت تقارن دارد. به این معنا که متغیرها قرینه بوده و برای محقق مهم نیست که کدام یک از متغیرهای مورد مطالعه وابسته و کدامیک مستقل می باشد. این شاخص مشخص می کند که تا چه میزان افزایش یا کاهش در یک متغیر با افزایش یا کاهش در یک متغیر دیگر همراه است. مقدار ضریب کندال همواره بین ۱- تا ۱+ در نوسان می باشد.کندال به سه روش مختلف محاسبه می گردد. زمانی که جدول به صورت دو بعدی باشد و تعداد آزمودنی یا N نیز بیشتر باشد از کندال تائو a استفاده می شود. کندال تائوb نیز زمانی مورد استفاده قرار می گیرد که تعداد خانه های سطر و ستون جدول دو بعدی با هم برابر باشند. اما آنچه تعداد ردیف ها و ستون ها با هم برابر نباشند و جدول به صورت مستطیل باشد باید از کندال تائو c استفاده شود. در این روش مقیاس ها باید ترتیبی باشند.

ضریب گاما

ضریب گاما شاخصی است که از طریق آن می توان با آگاهی از پاسخ هایی یک متغیر پاسخ ها و نتایج متغیر دیگر را پیشگویی کرد. گاما در واقع میزان کاهش خطا را که در نتیجه آگاهی از پاسخ افراد در متغیر مستقل رخ می دهد، مشخص می کند. به عبارت دیگر محقق با آگاهی از وضعیت پاسخ افراد به متغیر مستقل x با استفاد از گاما میزان کاهش خطا را در پیشگویی متغیر وابسته (y ) مورد آزمون قرار می دهد. مقادیر گاما بین ۱- تا ۱+ در نوسان است. از آنجا که ضریب گاما همواره روابط بین متغیر را خیلی قوی نشان می دهد بنابر این، این شاخص میل به بزرگ نشان دادن شدت ارتباط بین دو متغیر را دارد و به همین دلیل باید در بکارگیری این شاخص احتیاط کرد. از این روش زمانی استفاده می شود که مقیاس ها ترتیبی باشند.

 ضریب همبستگی رتبه ای اسپیرمن

ضریب همبستگی اسپیرمن که در اوایل دهه ۱۹۰۰ توسط چارلز اسپرمن ابداع گردیده است زمانی مورد استفاده قرار میگیرد که داده ها به صورت رتبه ای متوالی نا پیوسته باشد و یا اینکه مقادیر اصلی به رتبه تبدیل شوند. در صورتی که داده ها با مقیاس فاصله ای یا نسبی اندازه گیری شده باشند می توان آنها را به رتبه ای تبدیل کرد و بعد ضریب همبستگی رتبه ای اسپیرمن را محاسبه نمود. برای این منظور رتبه ۱ به بیشترین مقدار، رتبه ۲ به مقدار بعدی و الی آخر داده شود.

در این رتبه اگر در بین مقادیر اصلی دو یا چند مورد دارای مقادیر مساوی باشند، رتبه های مربوط به آن ها با همدیگر جمع شده و بر تعداد آنها تقسیم می گردد و میانگین به دست آمده به عنوان رتبه برای مقادیر فوق در نظر گرفته می شود. ضریب همبستگی اسپیرمن که آن را با P یا نشان می دهند همواره بین ۱- و ۱+ در نوسان است و از لحاظ سطح سنجش نیز ترتیبی و از نوع متقارن می باشد. به همین دلیل برای محقق مهم نیست که کدام متغیر مستقل و کدام و ابسته است. چنانچه در داده های مربوط به متغیرها موارد هم رتبه زیاد وجود داشته باشد در این صورت بهتر است از روش کندال تائو استفاده کرد. اما اگر تعداد طبقات زیاد باشد و موارد هم رتبه نیز بسیار کم باشند و داده ها به صورت رتبه ای متوالی نا پیوسته باشد باید از ضریب همبستگی اسپیرمن استفاده کرد.

 ضریب همسبتگی پیرسون

ضریب همبستگی پیرسون از روشهای پرکاربرد جهت تعیین میزان رابطه بین دو متغیر محسوب می گردیده و با علامتr نمایش داده می شود. این ضریب به منظور بررسی رابطه بین دو متغیر فاصله ای یا نسبی مورد استفاده قرار می گیرد و مقدار آن همواره بین ۱- و ۱+ در نوسان است. چنانچه مقدار به دست آمده مثبت باشد به معنای این است که تغییرات در هر دو متغییر بطور هم جهت اتفاق می افتد. به عبارت دیگر با هر گونه افزایش در مقدار یک متغیر، مقدار متغیر دیگر نیز افزایش پیدا می کند و بر عکس. اما چنانچه مقدار r منفی باشد بیانگر این نکته است که دو متغیر در جهت عکس همدیگر حرکت می کنند. یعنی با افزایش یک متغیر، مقادیر متغیر دیگر کاهش می یابد و بر عکس. اگر مقدار به دست آمده برای ضریب همبستگی صفر باشد به معنای این است که هیچگونه رابطه ای بین دو متغیر وجود ندارد. اگر مقدار r دقیقا برابر +۱ باشد بیانگر همبستگی مثبت کامل و اگر برابر ۱- باشد نشان دهنده همبستگی کامل منفی بین دو متغیر است.

موسسه ایران مشاور آماده است  تا در اسرع وقت و با قیمت مناسب، با در اختیار داشتن اساتید مجرب، مشاوره و تحلیل آماری پایان نامه ها و پروژه های دانشجویی، تحقیقات علمی و پروژه های پژوهشگران و همچنین پردازش آماری داده ها و تجزیه و تحلیل آماری پرسشنامه ها با استفاده از انواع نرم افزارهای آماری (spss ،amos ،lisrel ،sas و…..) به  انجام برساند.

 

ثبت-سفارش

لطفا کلیک کنید...
لطفا روی پلاس کلیک کنید :